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Bifractality of human DNA strand-asymmetry profiles results from transcription
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We use the wavelet transform modulus maxima method to investigate the multifractal properties of strand-
asymmetry DNA walk profiles in the human genome. This study reveals the bifractal nature of these profiles,
which involve two competing scale-invariant (up to repeat-masked distances =40 kbp) components character-
ized by Holder exponents /;=0.78 and h,=1, respectively. The former corresponds to the long-range-
correlated homogeneous fluctuations previously observed in DNA walks generated with structural codings. The
latter is associated with the presence of jumps in the original strand-asymmetry noisy signal S. We show that
a majority of upward (downward) jumps colocate with gene transcription start (end) sites. Here 7228 human
gene transcription start sites from the refGene database are found within 2 kbp from an upward jump of
amplitude AS=0.1 which suggests that about 36% of annotated human genes present significant transcription-
induced strand asymmetry and very likely high expression rate.
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The existence, the nature, and the origin of long-range
correlations (LRC’s) in DNA sequences has been the subject
of considerable recent interest [ 1]. Most of the investigations
of DNA sequences were originally performed with different
techniques, which all consisted in measuring a unique scal-
ing exponent related to the roughness (Hurst) exponent H of
the corresponding DNA walk profile [1,2]. But the measure-
ment of a unique exponent fails to resolve multifractality [2]
and provides limited information upon the nature of the
LRC. In a previous work [3], we introduced the wavelet
transform modulus maxima (WTMM) method, which allows
computing the so-called multifractal spectra—e.g., the D(h)
singularity spectrum of Holder exponent (k) values. A com-
parative statistical analysis of DNA walks generated from
eukaryote and eubacterial sequences using structural (curva-
ture) coding tables has shown that the corresponding DNA
chain bending profiles are monofractal (homogeneous) and
that there exist two scaling regimes: (i) in the 10—200-bp
range, LRC’s are observed for eukaryotic (H=0.6) [and not
for eubacterial (H=0.5)] sequences as the signature of the
nucleosomal structure and (i) over larger distances
(200—-20 000 bp), stronger LRC’s (H=0.8) seem to exist in
any sequence [4]. Recently, investigation of the thermody-
namical properties of DNA chains [5] has revealed that the
presence of these two LRC structural disorder regimes is
likely to predispose DNA to form small loops favoring chro-
matin condensation and decondensation processes.

Here we generalize the application of the WTMM method
to genome-wide multifractal sequence analysis when using
alternative codings related to biological properties. Accord-
ing to the second parity rule [6], under no-strand-bias condi-
tions, each genomic DNA strand should present equimolari-
ties of A and T and of G and C [7]. Deviations from
intrastrand equimolarities have been extensively studied dur-
ing the past decade, and the observed skews have been at-
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tributed to asymmetries intrinsic to replication and transcrip-
tion. Actually, during these processes, mutational events and
repair mechanisms can affect the two strands differently,
leading to transcription- and replication-associated asymme-
tries originally observed in bacteria [8,9]. It is only recently
that (i) eukaryotic transcription-associated strand asymme-
tries have been established [10,11] and (ii) replication-
associated strand asymmetries in mammals have been re-
vealed by chromosome-wide multiscale analysis [12].

We investigate strand asymmetries along human chromo-
somes via the computation of TA and GC skews in
nonoverlapping 1-kbp windows: S;4=(T-A)/(T+A) and
Scc=(G-C)/(G+C). Because of the observed correlation
between TA and GC skews [11], we will consider the total
skew S=S,+Sgc [Fig. 1(a)] and its corresponding DNA
walk obtained by cumulating S values along the sequences:
E(n):E;-’:lS(j) [Fig. 1(b)]. Our goal is to show that the skew
DNA walks of the 22 human autosomes display an unex-
pected (with respect to previous monofractal diagnosis [3])
bifractal scaling behavior [13] in the range 10—-40 kbp as the
signature of the presence of transcription-induced jumps in
the LRC noisy S profiles. Sequences and gene annotation
data (“refGene”) were retrieved from the UCSC Genome
Browser (May 2004). We used RepeatMasker to exclude re-
petitive elements that might have been inserted recently and
would not reflect long-term evolutionary patterns.

The WT is a space-scale analysis which consists in ex-
panding signals in terms of wavelets that are constructed
from the analyzing wavelet ¢ by means of dilations and
translations [2,3]. The WT of a function 2, is defined as

Ty(xpa) = 1 f E(x)lﬁ(x_x())dx, (1)

a

where x, and a (>0) are the space and scale parameters,
respectively. The main advantage of using the WT for ana-
lyzing the regularity of a function ¥ is its ability to eliminate
order-n polynomial behavior (low-frequency components in-
duced by genome compositional heterogeneity) by simply
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choosing a wavelet ¢ whose n+1 first moments are zero
[[X"(x)dx=0, 0=m=<n] [2,3]. In this work, we will use
the second derivative of the Gaussian function: zﬁ(z)(x)
=d?(e™"2/\[2 )/ dx? which has two vanishing moments. The
WTMM method [2,3] consists in investigating the scaling
behavior of some partition functions defined in terms of
wavelet coefficients:

Zg.a)= X [ sup |Tylx,a")|]?~a™, (2)
leLl(a) (x,a')el

a'<a

where ¢ € R. The sum is taken over the WT skeleton [Fig.
1(c)] defined at each fixed scale a by the local maxima of
|Ti/,(x,a) ; these WTMM are disposed on curves connected
across scales called maxima lines; the set £(a) of all maxima
lines that exist at scale a indicates how to position the wave-
lets in order to obtain a partition of the set of singularities of
3, at this scale. Indeed, the Legendre transform of 7(g) is the
singularity spectrum D(h)=min[gh—7(¢g)] defined as the
Haussdorf dimension of the set of points x where the Holder
exponent value is & [2,3]. Homogeneous fractal functions
(i.e., functions with a unique Holder exponent H) are char-
acterized by a linear 7(g) curve (d7/dg=h=H). Since Z(q,a)
amounts to computing the g-order moment of the WTMM
probability density function (pdf) PIT (] AL scale a, monof-
ractal scaling implies that the shape of this pdf does not
depend on the scale a, formally expressed by the self-
similarity relationship [2,3]

p\Tw(.,a)VaH(t) = P|T¢(.,1)\(f)- (3)

On the contrary, a nonlinear 7(¢) is the signature of nonho-
mogeneous functions displaying multifractal properties [A(x)
is a fluctuating quantity that depends upon x].

When computing Z(g,a) [Eq. (2)] from the WT skeletons
of the skew DNA walks 2 of the 22 human autosomes, we
get convincing power-law behavior for —1.5 < ¢ =<3 (data not
shown). In Fig. 2(a) are reported the 7{g) exponents obtained
using a linear regression fit of In Z(q,a) vs Ina over the
range of scales 10 kbp=<a =40 kbp. All the data points re-
markably fall on two straight lines 7,(¢)=0.78¢—1 and
7(q)=g—1 which strongly suggests the presence of two
types of singularities s;=0.78 and h,=1, respectively, on
two sets S; and S, with the same Haussdorf dimension
D=-7,(0)=—7,(0)=1, as confirmed when computing the
D(h) singularity spectrum in Fig. 2(b). This observation
means that Z(g,a) can be split into two parts [14]:

Z(g,a) = C1(q)a®™ " + Cy(q)a®">", (4)

where C,(¢q) and C,(g) are prefactors that depend on ¢. Since
hy <h,, in the limit a+— 07, the partition function is expected
to behave like Z(g,a)~C,(q)a?™" for ¢>0 and like
Z(q,a) ~ Cy(q)a®">~" for ¢ <0, with a so-called phase transi-
tion [14,15] at the critical value ¢.=0. Surprisingly, it is the
contribution of the weakest singularities s,=1 that controls
the scaling behavior of Z(q,a) for ¢>0 while the strongest
ones h;=0.78 actually dominate for ¢<<O [Fig. 2(a)]. This
inverted behavior originates from finite (1-kbp) resolution
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FIG. 1. (a) Skew profile S(n) of a repeat-masked fragment of
human chromosome 6; light gray (dark gray) 1-kbp window points
correspond to sense (antisense) genes lying on the Watson (Crick)
strand; black points to intergenic regions. (b) Cumulated skew pro-
file %(n). (c) WT of X; Ty@(n,a) is coded from white (min) to
black (max); the WT skeleton defined by the maxima lines is shown
in solid (dashed) lines corresponding to positive (negative) WT val-
ues. For illustration black solid (dashed) maxima lines are shown to
point to the positions of 4 upward (3 downward) jumps in S [verti-
cal dashed lines in (a) and (b)] that coincide with gene transcription
starts (ends). Thick white lines correspond to maxima lines that
persist above =200 kbp and that point to sharp upward jumps in
S [vertical solid lines in (a) and (b)] that are likely to be the loca-
tions of putative replication origins [12]; note that three out of those
four jumps are colocated with transcription start sites.

which prevents the observation of the predicted scaling be-
havior in the limit a— 0*. The prefactors C;(¢) and C,(g) in
Eq. (4) are sensitive to (i) the number of maxima lines in the
WT skeleton along which the WTMM behave as a™ or a”2
and (ii) the relative amplitude of these WTMM. Over the
range of scales used to estimate 7(g), the WTMM along the
maxima lines pointing (at small scale) to h,=1 singularities
are significantly larger than those along the maxima lines
associated to h;=0.78 [see Figs. 2(c) and 2(d)]. This
implies that the larger ¢>0, the stronger the inequality
C,(g)>C,(¢q) and the more pronounced the relative contri-
bution of the second term on the right-hand side of Eq. (4).
On the opposite for ¢ <0, C;(g) > C,(g) which explains that
the strongest singularities 7;=0.78 now control the scaling
behavior of Z(q,a).

In Figs. 2(c) and 2(d) are shown the WTMM pdf’s com-
puted at scales a=10, 20, and 40 kbp after rescaling by a1
and a", respectively. We note that there does not exist a
value of H such that all the pdf’s collapse on a single curve
as expected from Eq. (3) for monofractal DNA walks. Con-
sistently with the 7(¢g) data in Fig. 2(a) and with the inverted
scaling behavior discussed above, when using the two expo-
nents 51;=0.78 and h,=1, one succeeds in superimposing re-
spectively the central (bump) part [Fig. 2(c)] and the tail
[Fig. 2(d)] of the rescaled WTMM pdf’s. This corroborates
the bifractal nature of the skew DNA walks that display two
competing scale-invariant components of Holder exponents:
(i) h;=0.78 corresponds to LRC homogeneous fluctuations
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FIG. 2. Multifractal analysis of 2(n) of the 22
human (solid symbols) and 19 mouse (open

circles) autosomes using the WTMM method
with /@ over the range 10 kbp <a <40 kbp. (a)
7(q) vs q. (b) D(h) vs h. (c) WTMM pdf: p is
plotted versus |T|/a” where H=h;=0.78, in

. 2L semilogarithmic representation; the inset is an en-
(C) (d) largement of the pdf central part in linear repre-
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15 A'::_ In (c) and (d), the symbols correspond to scales
@ ] o ]
Q. IS .‘.:::::A“ lS tg“‘ a=10 (@), 20 (W), and 40 (A) kbp.
) o.:: .:A aa s .l
3 ®o mn A S 2,
Coetn et ie
4 - “"‘lll o4 e a® l'oo.
! cae ‘I‘ © :. .
g Is,, 2 ., LN
0z 04 0z 04 4 ubn
0.5 0 '?18 15 0.5 1 15
IT|/a™ IT|/a

previously observed over the range 200 bp=a =20 kbp in
DNA walks generated with structural codings [2,4] and (ii)
h,=1 is associated to convex Vv and concave A shapes in the
DNA walks 2 indicating the presence of discontinuities in
the derivative of X—i.e., of jumps in S [Figs. 1(a) and 1(b)].
At a given scale a, a large value of the WTMM in Fig. 1(c)
corresponds to a strong derivative of the smoothed § profile
and the maxima line to which it belongs is likely to point to
a jump location in S.

In Fig. 3 are reported the results of a statistical analysis of
the jump amplitudes in human § profiles. For maxima lines
that extend above a“=10 kbp, the histograms obtained for
upward and downward variations are quite similar, especially
their tails that are likely to correspond to jumps in the S
profiles [Fig. 3(a)]. When computing the distance between
upward or downward jumps (|AS|=0.1) to the closest tran-
scription start (TSS) or end (TES) sites [Fig. 3(b)], we reveal
that the number of upward jumps in close proximity (|An]|
=<3 kpb) to the TSS overexceeds the number of such jumps
close to the TES. Similarly, downward jumps are preferen-
tially located at the TES. These observations are consistent
with the steplike shape of skew profiles induced by transcrip-
tion: $>0 (S<0) is constant along a sense (antisense) gene
and S=0 in the intergenic regions [11]. Since a steplike pat-
tern is edged by one upward and one downward jump, the set
of human genes that are significantly biased is expected to
contribute to an even number of AS>0 and AS<<0 jumps
when exploring the range of scales 10=a =40 kbp, typical
of human gene size. Note that in Fig. 3(a), the number of
sharp upward jumps actually slightly exceeds the number of
sharp downward jumps, consistently with the experimental
observation that whereas the TSS’s are well defined, the
TES’s may extend over 5 kbp, resulting in smoother down-

ward skew transitions [11]. This TES particularity also ex-
plains the excess of upward jumps found close to TSS’s as
compared to the number of downward jumps close to TES’s
[Fig. 3(b)].

In Fig. 4(a), we report the analysis of the distance of the
TSS to the closest upward jump. For a given upward jump
amplitude, the number of TSS’s with a jump within |An|
increases faster than expected (as compared to the number
found for randomized jump positions) up to |An|=2 kbp.
This indicates that the probabilty to find an upward jump
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FIG. 3. Statistical analysis of skew variations at the singularity
positions determined at scale 1 kbp from the maxima lines that exist
at scales a=10 kbp in the WT skeletons of the 22 human auto-
somes. For each singularity, we computed the variation amplitudes
AS=58(3")-5(5") over two adjacent 5-kbp windows, respectively in
the 3’ and 5’ directions and the distances An to the closest TSS
(TES). (a) Histograms N(|AS|) for upward (AS>0, gray) and
downward (AS<0, black) skew variations. (b) Histograms of the
distances An of upward (gray) or downward (black) jumps with
|AS|=0.1 to the closest TSS (filled black bullet, filled gray bullet)
and TES (empty black circle, empty gray circle).
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FIG. 4. (a) Number of TSS’s with an upward jump within |An
(abscissa) for jump amplitudes AS>0.1 (black), 0.15 (dark gray),
and 0.2 (light gray). Solid lines correspond to true jump positions
while dashed lines to the same analysis when jump positions were
randomly drawn along each chromosome. (b) Among the N,y (AS™)
upward jumps of amplitude larger than some threshold AS”, we plot
the proportion of those that are found within 1 kbp (@), 2 kbp (H),
or 4 kbp (A) of the closest TSS vs the number Nrpgg of the so-
delineated TSS’s. Curves were obtained by varying AS™ from 0.1 to
0.3 (from right to left). Open symbols correspond to similar analy-
ses performed on random upward jump and TSS positions.

within a gene promoter region is significantly larger than
elsewhere. For example, out of 20 023 TSS’s, 36% (7228)
are delineated within 2 kbp by a jump with AS>0.1. This
provides a very reasonable estimate for the number of genes
expressed in germline cells as compared to the 31.9% re-
cently experimentally found to be bound to Pol II in human
embryonic stem cells [16].

Combining the previous results presented in Figs. 3(b)
and 4(a), we report in Fig. 4(b) an estimate of the efficiency/
coverage relationship by plotting the proportion of upward
jumps (AS>AS") lying in TSS proximity as a function of
the number of so-delineated TSS’s. For a given proximity
threshold |An|, increasing AS”™ results in a decrease of the
number of delineated TSS’s, characteristic of the right tail of
gene bias pdf. Concomitant to this decrease, we observe an
increase of the efficiency up to a maximal value correspond-
ing to some optimal value for AS". For |An|<2 kbp, we
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reach a maximal efficiency of 60% for AS*=0.225; 1403 out
of 2342 upward jumps delineate a TSS. Given the fact that
the actual number of human genes is estimated to be signifi-
cantly larger (~30000) than the number provided by ref-
Gene, a large part of the 40% (939) of upward jumps that
have not been associated to a refGene could be explained by
this limited coverage. In other words, jumps with sufficiently
high amplitude are very good candidates for the location of
highly biased gene promoters. Let us point that out of the
above 1403 (2342) upward jumps, 496 (624) jumps are still
observed at scale a“=200 kbp. According to Ref. [12], these
jumps are likely to also correspond to replication origins
underlying the fact that large upward jumps actually result
from the cooperative contributions of both transcription- and
replication-associated biases. The observation that 80%
(496/624) of the predicted replication origins are colocated
with TSS’s enlightens the existence of a remarkable gene
organisation at replication origins [12].

To summarize, we have demonstrated the bifractal char-
acter of skew DNA walks in the human genome. When using
the WT microscope to explore (repeat-masked) scales rang-
ing from 10 to 40 kbp, we have identified two competing
homogeneous scale-invariant components characterized by
Holder exponents /#;=0.78 and h,=1, which, respectively,
correspond to LRC-colored noise and sharp jumps in the
original DNA compositional asymmetry profiles. Remark-
ably, the so-identified upward (downward) jumps are mainly
found at the TSS (TES) of human genes with high transcrip-
tion bias and thus very likely higly expressed. This study
also underlines that most replication origins are important
organizing centers for transcription mechanisms. As illus-
trated in Fig. 2(a), similar bifractal properties are also ob-
served when investigating the 19 mouse autosomes. This
suggests that the results reported in this work are general
features of mammalian genomes.
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